McKesson Clinical Evidence Classification

References cited in the clinical content are classified according to the type of evidence presented. The class ratings, I through V, are intended to provide a classification of the evidence but are not necessarily hierarchical. Classifications appear in parentheses at the end of each reference. References followed by an (NC) are not classified; examples include pre-published research or information from government, manufacturer, laboratory, or patient education websites.

<table>
<thead>
<tr>
<th>Classification</th>
<th>Type of Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class I</td>
<td>Meta-analysis or systematic review</td>
</tr>
<tr>
<td>Class II</td>
<td>Well-designed controlled clinical trial or experimental study</td>
</tr>
<tr>
<td>Class III</td>
<td>Well-designed observational or epidemiologic study</td>
</tr>
<tr>
<td>Class IV</td>
<td>Evidence-based guideline</td>
</tr>
<tr>
<td>Class V</td>
<td>Expert opinion, panel consensus, literature review, text or reference book, descriptive study, case report, or case series</td>
</tr>
</tbody>
</table>

Class I
A meta-analysis is an analysis of the results from multiple trials. A systematic review is a qualitative means of summarizing multiple trials on the same intervention. Class I studies can show a statistically significant difference in support of an intervention when smaller studies could not. A meta-analysis or systematic review that finds insufficient evidence to support or refute an intervention (due to a lack of properly designed trials) is inconclusive. A potential weakness of Class I studies is that they may only assess published studies. Since studies demonstrating significant differences are more likely to be published than those that do not, publication bias is of concern.

Class II
A randomized controlled trial (RCT) is an experimental study design in which subjects are randomly assigned to an intervention or a control group. An RCT is the gold standard for testing cause and effect relationships. Intention-to-treat analysis should be performed to account for missing data points.

Class III
Observational or epidemiologic studies can suggest an association between events or findings. These associations cannot be used to establish causality. Cross-sectional, cohort, and case-control studies are all used to identify possible risk factors. Cross-sectional studies are also used to determine the prevalence of a condition. Cohort studies are used to study incidence, the natural history of a condition, prognosis after a specific exposure, and associated harms. Nonrandomized controlled trials are sometimes used when randomization is impossible or unethical.

Class IV
Evidence-based guidelines are systematically developed recommendations for clinical practice. Evidence-based guidelines identify the methodology used to gather the evidence on which the recommendations are based. Usually, a grading system for both the quality of the evidence and the strength of the recommendations is provided. Guidelines that are evidence-based may also contain consensus recommendations in areas where evidence is lacking, but these recommendations are clearly identified and appropriately graded.

Class V
Class V references may be the best information in the absence of other evidence. Expert opinion, panel consensus, literature reviews, and descriptive studies (case reports or case series) are subject to significant bias. A case series with comparison to historical controls can be plagued with missing data, and data extraction inconsistencies are common. The use of historical controls does not address how the diagnosis of disease or its treatment has evolved over time with newer technologies or medication. Text book information may be out of date by the time the book is
Comparative Effectiveness Research (CER)

"Comparative effectiveness research is the conduct and synthesis of research comparing the benefits and harms of different interventions and strategies to prevent, diagnose, treat and monitor health conditions in ‘real world’ settings."

Bibliography

American College of Radiology. ACR Practice Guideline for the Performance of Magnetic Resonance Imaging (MRI) of the Breast; 2004. (V)

InterQual® IMAGING Criteria: GENERAL

InterQual® IMAGING Criteria: GENERAL

Hillner et al. Impact of positron emission tomography/computed tomography and positron emission tomography (PET) alone on expected management of patients with cancer: initial results from the National Oncologic PET Registry. J Clin Oncol 2008. 26(13):2155-2161. (III)

Hillner et al. The impact of positron emission tomography (PET) on expected management during cancer treatment: findings of the National Oncologic PET Registry. Cancer 2009. 115(2):410-418. (III)

Houssami and Hayes. Review of preoperative magnetic resonance imaging (MRI) in breast cancer: should MRI be performed on all women with newly diagnosed, early stage breast cancer? CA Cancer J Clin 2009. 59(5):290-302. (V)

Iyer and Lee. MRI, CT, and PET/CT for ovarian cancer detection and adnexal lesion characterization. AJR Am J Roentgenol 2010. 194(2):311-321. (V)

InterQual® IMAGING Criteria: GENERAL

Norgren et al. Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). Eur J Vasc Endovasc Surg 2007. 33 Suppl 1:S1-75. (IV)
InterQual® IMAGING Criteria: GENERAL

Podoloff et al. NCCN task force report: positron emission tomography (PET)/computed tomography (CT) scanning in cancer. J Natl Compr Canc Netw 2007. 5 Suppl 1:S1-S22; quiz S23-22. (IV)
Podoloff et al. NCCN task force: clinical utility of PET in a variety of tumor types. J Natl Compr Canc Netw 2009. 7 Suppl 2:S1-26. (IV)
Rosen et al. FDG PET, PET/CT, and breast cancer imaging. Radiographics 2007. 27 Suppl 1:S215-229. (V)
Sandha et al. Is positron emission tomography useful in locoregional staging of esophageal cancer? Results of a multidisciplinary initiative comparing CT, positron emission tomography, and EUS. Gastrointest Endosc 2008. 67(3):402-409. (III)
InterQual® IMAGING Criteria: GENERAL

Sturman, Martin F., MD, FACP. Effective Medical Imaging: A Signs and Symptoms Approach, Williams & Wilkins, Baltimore, Md, 1993, p142.

Wells et al. Does this patient have deep vein thrombosis? JAMA 2006. 295(2):199-207. (I)

