McKesson Clinical Evidence Classification

References cited in the clinical content are classified according to the type of evidence presented. The class ratings, I through V, are intended to provide a classification of the evidence but are not necessarily hierarchical. Classifications appear in parentheses at the end of each reference. References followed by an (NC) are not classified; examples include pre-published research or information from government, manufacturer, laboratory, or patient education websites.

<table>
<thead>
<tr>
<th>Classification</th>
<th>Type of Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class I</td>
<td>Meta-analysis or systematic review</td>
</tr>
<tr>
<td>Class II</td>
<td>Well-designed controlled clinical trial or experimental study</td>
</tr>
<tr>
<td>Class III</td>
<td>Well-designed observational or epidemiologic study</td>
</tr>
<tr>
<td>Class IV</td>
<td>Evidence-based guideline</td>
</tr>
<tr>
<td>Class V</td>
<td>Expert opinion, panel consensus, literature review, text or reference book, descriptive study, case report, or case series</td>
</tr>
</tbody>
</table>

Class I
A meta-analysis is an analysis of the results from multiple trials. A systematic review is a qualitative means of summarizing multiple trials on the same intervention. Class I studies can show a statistically significant difference in support of an intervention when smaller studies could not. A meta-analysis or systematic review that finds insufficient evidence to support or refute an intervention (due to a lack of properly designed trials) is inconclusive. A potential weakness of Class I studies is that they may only assess published studies. Since studies demonstrating significant differences are more likely to be published than those that do not, publication bias is of concern.

Class II
A randomized controlled trial (RCT) is an experimental study design in which subjects are randomly assigned to an intervention or a control group. An RCT is the gold standard for testing cause and effect relationships. Intention-to-treat analysis should be performed to account for missing data points.

Class III
Observational or epidemiologic studies can suggest an association between events or findings. These associations cannot be used to establish causality. Cross-sectional, cohort, and case-control studies are all used to identify possible risk factors. Cross-sectional studies are also used to determine the prevalence of a condition. Cohort studies are used to study incidence, the natural history of a condition, prognosis after a specific exposure, and associated harms. Nonrandomized controlled trials are sometimes used when randomization is impossible or unethical.

Class IV
Evidence-based guidelines are systematically developed recommendations for clinical practice. Evidence-based guidelines identify the methodology used to gather the evidence on which the recommendations are based. Usually, a grading system for both the quality of the evidence and the strength of the recommendations is provided. Guidelines that are evidence-based may also contain consensus recommendations in areas where evidence is lacking, but these recommendations are clearly identified and appropriately graded.

Class V
Class V references may be the best information in the absence of other evidence. Expert opinion, panel consensus, literature reviews, and descriptive studies (case reports or case series) are subject to significant bias. A case series with comparison to historical controls can be plagued with missing data, and data extraction inconsistencies are common. The use of historical controls does not address how the diagnosis of disease or its treatment has evolved over time with newer technologies or medication. Text book information may be out of date by the time the book is
InterQual® IMAGING Criteria: HEAD AND NECK

Comparative Effectiveness Research (CER)
"Comparative effectiveness research is the conduct and synthesis of research comparing the benefits and harms of different interventions and strategies to prevent, diagnose, treat and monitor health conditions in "real world" settings." (U.S. Department of Health and Human Services, Report to the President and the Congress on Comparative Effectiveness Research; 2009. Available from: http://www.hhs.gov/recovery/programs/cer/execsummary.html [cited Apr 20 2010])

Bibliography

American Association of Clinical Endocrinologists (AACE) and the American College of Endocrinology (ACE). "AACE Clinical Practice Guidelines for the Diagnosis and Management of Thyroid Nodules." Endocrine Practice, 1996, 2(1): 78-94.
American College of Radiology. ACR practice guideline for the performance of single photon emission computed tomography (SPECT) brain perfusion and brain death studies; 2007 (IV)
American College of Radiology (ACR). ACR appropriateness criteria for pre-Irradiation evaluation and management of brain metastasis; 2005. (IV)
Barkhof et al. Comparison of MRI criteria at first presentation to predict conversion to clinically definite multiple sclerosis. Brain 1997. 120 (Pt 11):2059-2069. (III)

Copyright © 2011 McKesson Corporation and/or one of its subsidiaries. All Rights Reserved.
InterQual® IMAGING Criteria: HEAD AND NECK

Bluhmki et al. Stroke treatment with alteplase given 3.0-4.5 h after onset of acute ischaemic stroke (ECASS III): additional outcomes and subgroup analysis of a randomised controlled trial. Lancet Neurol 2009. 8(12):1095-1102. (II)
InterQual® IMAGING Criteria: HEAD AND NECK

Connelly and James. SIGN guideline for the management of patients with dementia. Int J Geriatr Psychiatry 2006. 21(1):14-16. (IV)

Friedman and Grosberg. Diagnosis and management of the primary headache disorders in the emergency department setting. Emerg Med Clin North Am 2009. 27(1):71-87, viii. (V)

InterQual® IMAGING Criteria: HEAD AND NECK

Goldstein et al. Primary prevention of ischemic stroke: a guideline from the American Heart Association/American Stroke Association Stroke Council: cosponsored by the Atherosclerotic Peripheral Vascular Disease Interdisciplinary Working Group; Cardiovascular Nursing Council; Clinical Cardiology Council; Nutrition, Physical Activity, and Metabolism Council; and the Quality of Care and Outcomes Research Interdisciplinary Working Group. Circulation 2006. 113(24):e873-923. (IV)
Gorelick and Ruland. Cerebral vascular disease. Dis Mon 2010. 56(2):39-100. (V)
Hoh et al. Results of a prospective protocol of computed tomographic angiography in place of catheter angiography as the only diagnostic and pretreatment planning study for cerebral aneurysms by a combined neurovascular team. Neurosurgery 2004. 54(6):1329-1340; discussion 1340-1322. (III)
InterQual® IMAGING Criteria: HEAD AND NECK

Knowlton. The role of FDG-PET, ictal SPECT, and MEG in the epilepsy surgery evaluation. Epilepsy Behav 2006. 8(1):91-101. (V)

McCabe et al. Restenosis after carotid angioplasty, stenting, or endarterectomy in the Carotid and Vertebral Artery Transluminal Angioplasty Study (CAVATAS). Stroke 2005. 36(2):281-286. (II CER)

Perry et al. Is the combination of negative computed tomography result and negative lumbar puncture result sufficient to rule out subarachnoid hemorrhage? Ann Emerg Med 2008. 51(6):707-713. (III)

Copyright © 2011 McKesson Corporation and/or one of its subsidiaries. All Rights Reserved.

BIB-9
InterQual® IMAGING Criteria: HEAD AND NECK

Sever et al. Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial--Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised controlled trial. Lancet 2003. 361(9364):1149-1158. (II)
Shneker and Fountain. Epilepsy. Dis Mon 2003. 49(7):426-478. (V)
InterQual® IMAGING Criteria: HEAD AND NECK
